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Comments on “Structural Optimization
in the Dynamics Response Regime:
A Computational Approach”

R. A. Ripaa*
Bendixz Corporation, South Bend, Ind.

N Ref. 1 the authors use the method of feasible directions in
the optimization part of their paper. Although the
usable feasible direction is correctly defined in their Egs.
(27) and (28), their method of obtaining the optimum feasible
direction is not optimum.

In order to find an optimum feasible vector the authors
of Ref. 1 solve a linear programming problem in each inter-
action. This approach is too long and expensive for practical
applications. Recently? a simpler and more direct method
has been developed for finding the optimum feasible direction.
This method involves operations on vectors by sweeping out
of the direction vector the components which lead to violation
of the active constraints.

Furthermore, the method presented in Ref. 2, and over-
looked in Ref. 1, leads to a faster convergence towards the
optimum and avoids ecertain local optimums. A generally
“steeper”’ direction vector is used because only the effective-
active constraints are included in the sweeping process.

If the component of the direction vector along the gradient
of an active constraint is positive, the movement in that
direction will not lead to a violation of the active constraint.
Disregarding such active constraints results in the steepest
feasible direction, ie., the direction vector closest to the
gradient of the objective function.

In conclusion, incorporating the approach presented in
Ref. 2 for finding the optimum feasible direction will lead
to an improved optimization technique, and further the con-
tribution of Ref. 1.
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Reply by Author to R. A. Ridha

R. L. Fox*
Case Western Reserve Unaversity, Cleveland, Ohio

IDHA has overlooked several points in his comment.
To begin with, the issue of efficiency of the direction
finding solution itself is academic because the linear program
which is solved at each iteration of Zontendijk’s method of
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feasible directions is a mere pip of calculation when com-
pared with the other arithmetic involved in solving a “practi-
cal” problem. A second, and perhaps more important point,
is the fact that the ‘‘new” method described by Ridha and
Wright is exactly Rosens gradient projection method. This
method was first described in Ref. 1 although the discussion
and comment in Sec. 4.3 of Ref. 2 may be helpful. The
method was also used to solve the problem in Ref. 3. Al-
though it is somewhat obscured by the form of the caleula-
tion, Ridha and Wright do a Gauss elimination process to
perform the projection.

Rosens method is indeed a superb technique but its main
usefulness is limited to problems with linear constraints.
For problems with convex constraint surfaces (as are typical
in many applications) the direction produced by it is infeasible
and the additional costly step to get back into the feasible
domain as described by Ridha and Wright is necessary.
Incidentally, with the “pushoff factors” in the method of
feasible directions set to zero, the method produces the pro-
jected gradient vector and it is therefore a sub-method of the
feasible direction method. In conclusion, the method was
not “overlooked” but disregarded as inappropriate for this
class of problems.
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Comment on “Stability of a Spinning
Body Containing Elastic Parts via
Liapunov’s Direct Method”

VALENTIN V. RUMYANTSEV*
Computing Center of the USSR Academy of Sciences,
Moscow, USSR

N his paper! L. Meirovitch has solved the problem on the

stability of a spinning body containing elastic parts.
He has obtained the system of the differential equations by
means of Hamilton’s principle. The motion of the system
is described by a “hybrid” set of ordinary differential equa-
tions and partial differential equations. Considering the
Hamiltonian as a Liapunov function and functional simul-
taneously the author has obtained the sufficient conditions
of the stability.

The author asserts, that he has presented ‘‘a new method
of approach to the stability problem of hybrid systerss . . .
The method consists of an extension of the Liapunov direct
method by considering for testing purposes a hybrid form,
that is a form which is a Liapunov function and functional
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at the same time. The method works directly with the
hybrid set of differential equations . ...”

The assertion, that the method is the new one, is not quite
right. The method has been developed first in papers®
(see also the monograph?) for applying to the problem on
stability of solid bodies with liquid-filled cavities. The hy-
brid set of the differential equations of the system motion has
been also obtained with the help of Hamilton’s principle.
The energy or a combination of the energy and the first in-
tegrals of the hybrid set of differential equations has been
considered as Liapunov function and funectional simul-
taneously.

This method is indeed the general and rigorous one and
should be applicable to the stability analysis in many areas.
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Reply by Author to V. V. Rumyantsev

Leoxarp MEmRovITCH®
Unaversity of Cincinnati, Cincinnali, Ohio

N his Comment, Rumyantsev disputes the assertion made

in Ref. 1 that “A new method of approach to the stability
problem of hybrid systems, . . ., is presented.” He argues
the point by contending that the “general and rigorous”
method was developed in Ref. 2 (Ref. 3 presents essentially
the same information as Ref. 2). This contention, however,
does not find much support in facts, and, indeed, a close
examination of Ref. 1 reveals very little resemblance to Ref.
2. Although both works are concerned with hybrid systems
and consider stability analyses based on Liapunov’s direct
method, there the similarities end. Whereas the mathe-
matical model of Ref. 1 is a solid body that is part rigid and
part elastic, Ref. 2 considers rigid bodies with fluid-filled
cavities. The real difference, however, lies not so much in
the mathematical model, or the problem formulation, but
in the method of approach to the stability problem. Indeed,
Ref. 2 uses the standard Liapunov method to test the sta-
bility of a discrete system, whereas Ref. 1 develops a tech-
nique, based on the Liapunov dircet method, to test the
stability of a hybrid system. To be specific, Ref. 2 reduces
the hybrid system to a discrete one by either considering
cavities entirely filled with an ideal fluid and assuming that
“ ... the motion of the fluid is completely defined by a finite
number of variables” or by considering cavities partially or
completely filled by an ideal or viscous fluid and assuming
that ‘. .. in this case it is also possible to state the stability
problem with respect to a finite number of variables by
introducing certain quantities that integrally describe the
motion of the fluid.” To analyze such systems, Rumyantsev
presents “Two theorems on stability with respect to a part
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of the variables, which can be regarded as modifications of
the Lyapunov stability theorem.” In conclusion, Rumyant-
sev interprets stability in a finite dimensional vector space
consisting of the rigid body motion and a finite number of
variables (depending on time but not-on space) representing
the fluid, thus avoiding many of the difficulties inherent in a
stability analysis of truly hybrid systems. '

The method of Ref. 1, by contrast, does not resort to any
discretization scheme and interprets stability . . . in a space
S which can be regarded as the cartesian product of the finite
dimensional veector space and the function space.” The
vector space is associated with the ‘“‘rigid-body motion” and
the function space with the motion of the elastic continuum.
Since the system is hybrid, an expression which is both a fune-
tion and [ at the same time is considered for testing purposes;
the expression is the system Hamiltonian. Difficulties
caused by terms involving partial derivatives with respect
to spatial variables in the Hamiltonian are circumvented by
invoking certain properties of Rayleigh’s quotient and de-
vising a new testing function « which is known to be smaller
in value than the Hamiltonian. Moreover, defining a test-
ing density function & for every point of the elastic domain
D., where & = «/D., the sign properties of & are checked at
every point of D,.

The aiithor is confident that a more in-depth study will
convince Rumyantsev that Ref. 1 does indeed contain many
novel ideas not found anywhere else. The application of the
techniques developed in Ref. 1 to test the stability of motion
of rigid bodies with fluid-filled cavities is in the realm of
possibility.
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Comment on “Spectroscopic Study
of Ion-Neutral Coupling in
Plasma Acceleration”

Denis J. ConnoLLy* anp RoNarp J. Sovief
NASA Lewis Research Center, Cleveland, Ohio

ALLIARIS and Libby! have apparently overlooked an
effect which may contribute appreciable errors to their
measurements of axial velocity of neutrals in an MPD flow.
Their velocity measuring technique cannot discriminate be-
tween particles which emanate from the thruster and identical
particles which diffuse into the beam from the background.
Both will be excited by collisional processes in the core of the
beam and both will contribute light to the spectral line being
observed. Their relative contributions will be in proportion
to their relative densities. If the density of the background
neutrals is not negligible compared to the density of the beam
neutrals, a spectroscopic observation will yield a composite
line.
The apparent doppler shift will give some sort of weighted
average of the velocities of the two types of neutrals. Unless
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